7-1: Properties of Parallelograms

A parallelogram is a quadrilateral whose opposite sides are parallel.
The following theorems apply to all parallelograms:

- If a quadrilateral is a parallelogram, then its opposite sides are congruent.
- If a quadrilateral is a parallelogram, then its opposite angles are congruent.
- If a quadrilateral is a parallelogram, then its consecutive (or same-side interior) angles are supplementary.
- If a quadrilateral is a parallelogram, then its diagonals bisect each other.

EX 1) In parallelogram $K L M N$ below, points O, P, Q, R are midpoints of $\overline{X N}, \overline{X K}, \overline{X L}$, and $\overline{X M}$, $\angle N K L=61^{\circ}$ and $\angle N L K=68.3^{\circ}$. Find the indicated measures.

a) $K N$
b) $P X$
c) $K L$
d) $X N$
e) $L N$
f) $K P$
g) $K R$
h) $m \angle M N L$
i) $m \angle N L M$
j) $m \angle N M L$
k) $m \angle X Q P$

1) Perimeter of $K L M N$

EX 2) Solve for x and y in the parallelogram below.

7-2: Properties of Parallelograms

In order to prove that a quadrilateral is a parallelogram, you can show that both pairs of opposite sides are parallel (since this is the definition of a parallelogram).

In addition, you can prove a quadrilateral is a parallelogram any of the following ways:

- If the opposite sides of a quadrilateral are congruent, then it is a parallelogram.
- If the opposite angles of a quadrilateral are congruent, then it is a parallelogram.
- If the consecutive angles of a quadrilateral are supplementary, then it is a parallelogram.
- If the diagonals of a quadrilateral bisect each other, then it is a parallelogram.
- If one pair of opposite sides are parallel and congruent, then the quadrilateral is a parallelogram.

Note that these are the converses of the theorem in 6-2 (with the exception of the last statement). (page 413 has a good summary for recognizing what is a parallelogram)

EX 3) For each of the figures below, which MUST be parallelograms. If it is a parallelogram, write the reason why it is. If it is not, explain why not.

b)

c)

EX 4) Prove that quadrilateral $A B C D$ below is a parallelogram. There are 3 different ways to attack this coordinate proof, so find one that works best for you.

- Method 1: Show that opposite sides are parallel (have the same slope).
- Method 2: Show that opposite sides are congruent (have the same length).
- Method 3: Show that one pair of opposite sides is congruent and parallel.

