Λ.	NI		\mathbf{c}
Α	. IVI.	υ.	U.

PRECALCULUS ACCELERATED Fall Practice Final Part I: CALCULATOR REQUIRED

Date

NAME _____

Period _____

Directions: Complete each of the following NEATLY IN PENCIL in the space provided. Show all work; round at THREE decimal places. Good Luck.

Multiple Choice (3 pts. each)

1. Give the approximate location of a local maximum for the function $y = 5x^3 - 7x^2 + 2x - 1$.

(a)
$$(0.176, -1.328)$$

(b) $(0.757, -0.838)$
(c) $(0.176, -0.838)$
(d) $(0.757, -1.328)$
(e) $(-0.838, 0.176)$
2. Given $f(3) = 5, f'(3) = 1.1, g(3) = -4, \text{ and } g'(3) = 0.7, \text{ find the derivative of } \underbrace{f}_{g} \text{ at } x = 3$
(a) 0.025
(b) 0.49375
(c) -0.49375
(c) -0.49375
(c) -0.025
(e) 1.975
3. $\lim_{x \to 1} \frac{\sqrt{x+3}-2}{1-x} = \frac{\sqrt{1+3}-2}{1-1}; \frac{2-2}{1-1}: \frac{0}{6}$
(a) 0.5
(b) 0.25
(c) $0 = 0.5$
(c) $1 = \sqrt{1-1}; \frac{1}{\sqrt{x+3}+2} = \lim_{x \to 1} \frac{x+3-4}{(\sqrt{x+3}+2)}: \frac{x+7-4}{(\sqrt{x+3}+2)}: \frac{1}{\sqrt{1}(\sqrt{x+3}+2)}: \frac{1}{\sqrt$

A.M.D.G.

(3, f(3))

4. The point (3, 5) is on the graph of y = f(x). An equation of the line tangent to the graph of f at (3, 5) is This graph gives US

(x-5)(x-2)

Free Response (10 pts. each)

1. Find the domain and extreme points of $y = x^3 - x^2 - x + 1$.

Domain:

Extreme Points:

2. Find the zeros, POE's, VA's and critical points of $y = \frac{9 - x^2}{x^2 - 7x + 10}$.

Zeros: (3,0) (3,0)

POE: None

VA: X=2,5

Critical Points: $f = 9 - x^2$ f' = -2x

3. Find the domain, zeros, and extreme points for $y = \frac{2x^3 + x^2 - 5x + 2}{2x^2 - 5x + 2}$.

Domain:

Zeros:

Extreme Points:

А	.M.]	D.(G.

PRECALCULUS ACCELERATED Fall Practice Final Part II: NO CALCULATOR ALLOWED

Date

NAME

Period _____

Directions: Complete each of the following NEATLY IN PENCIL in the space provided. Show all work; round at THREE decimal places. Good Luck.

Multiple Choice (3 pts. each)

- 5. Let f be a function defined for all real numbers x. If $f'(x) = \frac{4-x^2}{x-2}$, then f is increasing on the interval (a) $(-\infty, -2)$ (b) $(-\infty, \infty)$ (c) (-2, 2)(d) $(-2, \infty)$ (e) $(-2, 2) \cup (2, \infty)$ 4. 05. What is $\lim_{h \to 0} \frac{8(x+h)^8 - 8x^8}{h}$? (a) 0 (b) $8x^7$ (c) $f(x) = 8x^8$? (c) $64x^7$ (c) $64x^7$ (c) $64x^8$ (c) It cannot be determined from the given information
- 9. Given the sign pattern below, at what value of x does f have a local minimum?

$$(a) -4 \qquad (b) -1 \qquad (c) 2 \qquad (d) 1 \qquad (e) no value$$

A.M.D.G.

10. The function *f* is given by $f(x) = \frac{ax^2 + 12}{x^2 + b}$. The figure below shows a portion of the graph of *f*. Which of the following could be the values of the constants *a* and *b*?

5. Find all traits listed below of $y = \frac{9 - x^2}{x^2 - 7x + 10} \cdot = \frac{(3 - x)(3 + x)}{(x - 5)(x - 2)}$

$$y' = \frac{(-2x)(x^{2}-7x+10) - (2x-7)(9-x^{2})}{(x^{2}-7x+10)^{2}}$$

Zeros:

y-int:

VAs:

$$= \frac{-2 \times^{3} + 14 \times^{2} - 20 \times - (17 \times - 2 \times^{3} - 16 + 7 \times^{2})}{(\times^{2} - 7 \times + 10)^{2}}$$

POEs:

 $= -2x^{3} + 14x^{2} - 20x - 18x + 2x^{3} + 16 - 7x^{2}$ Linnan Vanues: $(\chi^{2} - 7\chi + 10)^{2}$ Just find 4 E.B. Horizontal Asymptok $y = \frac{-x^2}{x^2} = -1 = \frac{7x^2 - 38x + 63}{(x^2 - 7x + 10)^2}$ 6. Find all traits listed below of $y = \frac{2x^3 + x^2 - 5x + 2}{2x^2 - 5x + 2}$. Zeros: $(-2, \delta)(-1, \delta)$ y-int: VAs: $\bigvee A \neq \chi = 2$ POEs: $(\frac{1}{2}, -\frac{5}{2}) \leftarrow \frac{(x+2)(2x-1)(x-1)}{(2x-1)(x-2)}$ plug in $\frac{1}{2}$ after cancelling to get $-\frac{5}{2}$ -Critical values 4 $\frac{\chi^2 + \chi - 2}{\chi - 2} \xrightarrow{\qquad} f = \chi^2 + \chi - 2 \qquad g = \chi - 2$ $f' = 2\chi + 1 \qquad g' = 1$ EB: Slant Asymptote $y' = \frac{(2x+1)(x-2) - (x^{2}+x-2)}{(x-2)^{2}} = \frac{2x^{2}-3x-2-x^{2}-x+2}{(x-2)^{2}}$ $X-2)\overline{X^2+X-2}$ ¥=x+3 $= \frac{x^2 - 4x}{(x - 2)^2} = \frac{x(x - 4)}{(x - 2)^2}$ $\frac{-(\chi^2 - \partial x)}{+3\chi - \partial}$ -(3x-6)