

Corresponding Angles Postulate	Corresponding Angles Converse Postulate		
If two lines (m and n) cut by a transversal (p) are parallel then the corresponding angles are congruent. $m \\| n \Rightarrow \angle 1 \cong \angle 5$	If two lines (m and n) are cut by a transversal (p) and the corresponding angles are congruent then the lines (m and n) are parallel $\angle 1 \cong \angle 5 \Rightarrow m \\| n$		
Alternate Interior Angles Theorem	Alternate Interior Angles Converse Theorem		
If two lines (m and n) cut by a transversal (p) are parallel then the alternate interior angles are congruent. $m \\| n \Rightarrow \angle 2 \cong \angle 8$	If two lines (m and n) are cut by a transversal (p) and the corresponding angles are congruent then the lines (m and n) are parallel $\angle 2 \cong \angle 8 \Rightarrow m \\| n$		
Consecutive (Same Side) Interior Angles Theorem	Consecutive (Same Side) Interior Angles Converse Theorem		
If two lines (m and n) cut by a transversal (p) are parallel then the consecutive (same side) interior angles are supplementary. $m \\| n \Rightarrow m \angle 2+m \angle 5$	If two lines (m and n) are cut by a transversal (p) and the corresponding angles are congruent then the lines (m and n) are parallel $m \angle 2+m \angle 5=180^{\circ} \Rightarrow m \\| n$		
Alternate Exterior Angles Theorem	Alternate Exterior Angles Converse Theorem		
If two lines (m and n) cut by a transversal (p) are parallel then the alternate exterior angles are congruent. $m \\| n \Rightarrow \angle 4 \cong \angle 6$	If two lines (m and n) are cut by a transversal (p) and the alternate exterior angles are congruent then the lines (m and n) are parallel $\angle 4 \cong \angle 6 \Rightarrow m \\| n$		

