

How would we find the surface area of this cylinder?

$$
\begin{aligned}
& A_{\text {surface }}=A_{\text {bases }}+A_{\text {lateralarea }} \\
& A_{\text {surface }}=
\end{aligned}
$$

Lateral area or area around the cylinder

How would we find the surface area of this cylinder?

$$
\begin{aligned}
& A_{\text {surface }}=A_{\text {bases }}+A_{\text {lateralarea }} \\
& A_{\text {surface }}=2 \pi r^{2}+2 \pi r h
\end{aligned}
$$

$$
C=2 \pi r
$$

Lateral area or area around the cylinder

Identify the vertices, edges, and bases of the given prism

Vertices: $\quad A, B, C, D, E, F$

Edges: $\overline{A B}, \overline{B C}, \overline{A C}, \overline{D E}, \overline{E F}, \overline{D F}$ $\overline{A D}, \overline{B E}, \overline{C F}$

Base: $\triangle A B C, \triangle D E F$

What two-dimensional shape would a vertical cross-section be?

Rectangle

What two-dimensional shape would a horizontal cross-section be?

Triangle

What two-dimensional shape would a vertical cross-section be?

Rectangle

What two-dimensional shape would a horizontal cross-section be?

Pentagon

The volume of this prism would be

Area of the base (pentagon) times the height of the prism

$$
V=\left(\frac{1}{2} a P\right) h
$$

In the case of prisms and cylinders, the concept of volume is the same: The volume is the product of the area of the base and the height

In the case of non-right prisms and cylinders, the formula does not change but the height can be a little more challenging. We might need to use our knowledge of right triangles

Volume $=B \cdot h$

$T=7 \cdot M \cdot M$

$$
V=\frac{1}{2} b \cdot a \cdot h
$$

The volume of a cylinder is also a product of the area of the base and the height. Note that not all cylinders are right cylinders so you may have to use right triangles to calculate the height

$$
V=\pi r^{2} h
$$

