Pyramids

The general formula for the volume of a Pyramid is

$$
V_{\text {Pyramid }}=\frac{1}{3} B h
$$

The general formula for the volume of a Pyramid is

$$
V_{\text {Pyramid }}=\frac{1}{3} B h
$$

For either of these $B=l \times w$
because the base is just a rectangle (or possibly a square)

because the base is a Pentagon

$$
\begin{aligned}
B & =\frac{1}{2} a P=\frac{1}{2} \frac{b}{\tan \left(36^{\circ}\right)} P \\
V & =\frac{1}{3}\left(\frac{1}{2} \frac{b}{\tan \left(36^{\circ}\right)} P\right) h
\end{aligned}
$$

$$
V=\frac{1}{3} l w h=\frac{1}{3} 8 \cdot 6 \cdot 5=80 \mathrm{~cm}^{3}
$$

$$
\begin{aligned}
& V=\frac{1}{3} A_{\text {hexagon }} h \\
& V=\frac{1}{3}\left(\frac{1}{2} a P\right) h \\
& V=\frac{1}{3}\left[\frac{1}{2}(2 \sqrt{3}) 24\right] 7=56 \sqrt{3} \mathrm{~cm}^{3}
\end{aligned}
$$

$$
h=7 \mathrm{~cm}
$$

So the slant height is linked to the apothem and the height of the pyramid by the Pythagorean
Theorem

$$
a^{2}+h^{2}=l^{2}
$$

$l=$ slant height

The surface area involves knowing the slant height of the pyramid

What is the slant height and how do we find it?
$h \quad l$

$A_{\text {viaingle }}=\frac{1}{2} 4 \sqrt{3} \cdot 10=20 \sqrt{3}$
Six of these gives us
Find the surface area of the pyramid (Minus the base)
Since there are six triangles, let's find one triangle's area

$$
120 \sqrt{3} \mathrm{~cm}^{2}
$$ and then multiply this result by six

$$
\begin{aligned}
6^{2}+8^{2} & =l^{2} \quad \text { This is just a 3-4-5 Triangle } \\
l & =10 \mathrm{~cm}
\end{aligned}
$$

