Remember these from last time?
These are called the Double Angle Identities for Sine $\boldsymbol{\&}$ Cosine (pg 148)

$\sin (2 A)=2 \sin A \cos A$

$$
\cos (2 A)=\cos ^{2} A-\sin ^{2} A
$$

$$
\cos (2 A)=2 \cos ^{2} A-1
$$

$$
\cos (2 A)=1-2 \sin ^{2} A
$$

$\sin \alpha=\frac{4}{5}$
$\cos \alpha=\frac{3}{5}$

$\sin \beta=\frac{12}{13}$

$$
\cos \beta=-\frac{5}{13}
$$

Use the answers you have and the composite identities to solve the given problems

$$
\begin{aligned}
& \sin \alpha=\frac{4}{5} \quad \cos \alpha=\frac{3}{5} \quad \sin \beta=\frac{12}{13} \quad \cos \beta=-\frac{5}{13} \\
& \sin (2 \alpha)=2 \sin \alpha \cos \alpha=2 \cdot \frac{4}{5} \cdot \frac{3}{5}=\frac{24}{25} \\
& \sin (2 \beta)=2 \sin \beta \cos \beta=2 \cdot \frac{12}{13} \cdot\left(-\frac{5}{13}\right)=-\frac{120}{169} \\
& \cos (2 \alpha)=\cos ^{2} \alpha-\sin ^{2} \alpha=\left(\frac{3}{5}\right)^{2}-\left(\frac{4}{5}\right)^{2}=\frac{9}{25}-\frac{16}{25}=-\frac{7}{25} \\
& \cos (2 \beta)=\cos ^{2} \beta-\sin ^{2} \beta=\left(-\frac{5}{13}\right)^{2}-\left(\frac{12}{13}\right)^{2}=\frac{25}{169}-\frac{144}{169}=-\frac{119}{169} \\
& \text { This is consistent with } 2 \alpha \text { being } \\
& \text { a } 2^{\text {nd }} \text { quadrant angle }
\end{aligned}
$$

The Double Angle Identity for
Cosine can be manipulated like this:

$$
\begin{gathered}
\cos (2 A)=\cos ^{2} A-\sin ^{2} A \\
\cos (2 A)=\cos ^{2} A-\left(1-\cos ^{2} A\right) \\
\cos (2 A)=\cos ^{2} A-1+\cos ^{2} A \\
\cos (2 A)=2 \cos ^{2} A-1 \\
\frac{\cos (2 A)+1}{2}=\cos ^{2} A
\end{gathered}
$$

The Double Angle Identity for Cosine can be manipulated like this:

$$
\frac{\cos (2 A)+1}{2}=\cos ^{2} A
$$

$$
\cos A= \pm \sqrt{\frac{1+\cos (2 A)}{2}}
$$

The Half Angle Identities

The Half Angle Identities

$$
\cos A= \pm \sqrt{\frac{1+\cos (2 A)}{2}}
$$

$$
\sin A= \pm \sqrt{\frac{1-\cos (2 A)}{2}}
$$

These Identities become essential in Calculus especially without the radical as below

$$
\sin ^{2} A=\frac{1-\cos (2 A)}{2}
$$

$$
\text { Pg. } 120 \# 1,2,4,9
$$

