## **Conditional Probability**

## Example: Drawing a King or a Heart

Drawing a card from the top of a randomly shuffled deck, each card has a probability of  $\frac{1}{52}$  of being drawn.  $P(K) = Probability of drawing a king is \frac{4}{52} = \frac{1}{13}$ 



4 Kings

52 Cards

because...

### Example: Drawing a King or a Heart



## Example: Drawing a King or a Heart So what is the probability of drawing a King <u>or</u> a Heart? P(K) = Probability of drawing a king is

 $\frac{4}{52} = \frac{1}{13}$ 

While  $P(\mathbf{v}) = Probability$  of drawing a heart is



Example: Drawing a King or a Heart So what is the probability of drawing a King <u>or</u> a Heart? Note that there are 17 cards but...

2 King of Hearts

 $P(\text{K or } \mathbf{v}) = 4/52 + 13/52 - 1/52$ 

 $P(K \text{ or } \mathbf{v}) = 16/52$ 





So we end up with this formula:

 $P(K \text{ or } \mathbf{v}) = P(K) + P(\mathbf{v}) - P(K \text{ and } \mathbf{v})$ 

...and that leads us to the general formula:

# The Probability of the Event {*A* or *B*} when *A* and *B* are Not Disjoint

P(A or B) = P(A) + P(B) - P(A and B)

If we already knew that the card was a Heart what would the probability be that it is a King?

This is called **Conditional Probability.** In other words, what is the probability that the card is a King given that it is a Heart?

The notation for **Conditional Probability** is that the probability of *A* given that *B* is true can be given by P(A | B)

In this case we will be finding  $P(K | \forall)$ 



$$P(K | \mathbf{v}) = \frac{P(K \cap \mathbf{v})}{P(\mathbf{v})} \longrightarrow \text{King and Heart}$$

$$P(K | \mathbf{v}) = \frac{1/52}{13/52} = \frac{1}{13}$$

If we already knew that the card was a Heart what would the probability be that it is a King?

This is called **Conditional Probability.** In other words, what is the probability that the card is a King given that it is a Heart?

This makes sense because there are 13 hearts and one of them is a king



The Conditional Probability of the Event {*A* given that *B* has occured} when *A* and *B* are Not Disjoint

$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$
Probability of A given  
B has occured
Probability of A and B divided  
by the probability of B

So are the king and the heart *independent events*?

Notice what happens when we compare two particular probabilities here:



The fact that these two probabilities are equal shows that drawing a king is independent of drawing a king given that the card is a heart.

 $P(K | \checkmark) = P(K)$ 

The Conditional Probability of the Event {*A* given that *B* has occured} when *A* and *B* are Not Disjoint

$$P(A | B) = \frac{P(A \cap B)}{P(B)}$$
Probability of A given  
B has occured
Probability of A given  
B has occured
Probability of A and B divided  
by the probability of B

So Conditional Probability has this corollary:

If the two events are independent

$$P(A \mid B) = P(A)$$

Suppose you are choosing at random from only the married women

P(Age 30-64 | Married Women) = The probability that among the married women, someone age 30-64 will be chosen

$$P(30-64 | Married) = \frac{P(Married \& 30-64)}{P(Married)} = \frac{43,808/103,870}{59,920/103,870}$$

#### Age and marital status of women in the U.S. (thousands)

|                      |        | Age    |             |         |
|----------------------|--------|--------|-------------|---------|
|                      | 18-29  | 30-64  | 65 and over | Total   |
| Married              | 7,842  | 43,808 | 8,270       | 59,920  |
| <b>Never Married</b> | 13,930 | 7,184  | 751         | 21,865  |
| Widowed              | 36     | 2,523  | 8,385       | 10,944  |
| Divorced             | 704    | 9,174  | 1,263       | 11,141  |
| Total                | 22,512 | 62,689 | 18,669      | 103,870 |

Source: Data for 1999 from the 2000 Statistical Abstract of the U.S.

Suppose you are choosing at random from only the married women

P(Age 30-64 | Married Women) = 43,808/59,920

Another way to look at it:

Since this condition means that we are only drawing from married women, we can also just change the denominator when considering the probability.

|                      |        | Age    |             |         |
|----------------------|--------|--------|-------------|---------|
|                      | 18-29  | 30-64  | 65 and over | Total   |
| Married              | 7,842  | 43,808 | 8,270       | 59,920  |
| <b>Never Married</b> | 13,930 | 7,184  | 751         | 21,865  |
| Widowed              | 36     | 2,523  | 8,385       | 10,944  |
| Divorced             | 704    | 9,174  | 1,263       | 11,141  |
| Total                | 22,512 | 62,689 | 18,669      | 103,870 |

Age and marital status of women in the U. S. (thousands)

Source: Data for 1999 from the 2000 Statistical Abstract of the U.S.