Probability Rules:

- The sum of the probabilities for all possible outcomes in a sample space is 1 .
- The probability of an outcome is a number between 0 and 1 inclusive. An outcome that always happens has probability 1. An outcome that never happens has probability 0 .
- The probability of an outcome occurring equals 1 minus the probability that it doesn't occur.
- The probability that two mutually exclusive (disjoint) events occur is 0 .

Strategies for Solving Probability Problems:

Draw a picture of the situation -

- Table/Charts

- Formulas
- Venn Diagram
- Tree Diagram

Formulas

Is there a formula on the AP formula sheet that applies?
$P(A \cup B)=P(A)+P(B)-P(A \cap B)$
$P(A \mid B)=\frac{P(A \cap B)}{P(B)}$

Intersection in both equations sometimes you will need to use both equations to solve one problem

Is there a formula/idea that is not on the AP formula sheet that applies?

If events are disjoint, then $P(A \cap B)=0$
If events are independent, then $P(A \mid B)=P(A)$ or

Use these formulas when appropriate, i.e. based on what information is given

If events are independent, then

$$
P(A \mid B)=P(A) \quad \text { or } \quad P(A \cap B)=P(A) P(B)
$$

A fair coin is tossed twice. The four possible outcomes are listed below

	Two cointosses	2nd toss	
		H_{2}	T_{2}
8	H_{1}	$\mathrm{H}_{1} \mathrm{H}_{2}$	$H_{1} T_{2}$
5	T_{1}	$T_{1} H_{2}$	$T_{1} T_{2}$

$$
\begin{aligned}
& P\left(H_{1}\right)=\text { probability of 1st toss heads }=\frac{1}{2} \\
& \begin{aligned}
& P\left(H_{1} \cap H_{2}\right)=\text { probability of both tosses being heads } \\
&=\frac{1}{4} \quad \text { only one of the four possibilities is } \\
& \text { two heads }
\end{aligned}
\end{aligned}
$$

$$
P\left(H_{2} \mid H_{1}\right)=\begin{gathered}
\text { probability of } 2 \text { nd toss being heads } \\
\text { given that the } 1 \text { st was heads }
\end{gathered}
$$

$$
=\frac{1}{2} \quad \begin{gathered}
\text { two cases of heads on first toss with } \\
\text { one outcome being heads on the } \\
\text { second toss }
\end{gathered}
$$

$$
P\left(H_{2} \mid H_{1}\right)=P\left(H_{2}\right)=\frac{1}{2}
$$

Since the conditional probability is the same, the events are independent

If events are independent, then

$$
P(A \mid B)=P(A) \quad \text { or } \quad P(A \cap B)=P(A) P(B)
$$

A fair coin is tossed twice. The four possible outcomes are listed below

	Two coin	2nd toss	
		H_{2}	T_{2}
0	H_{1}	$H_{1} H_{2}$	$H_{1} T_{2}$
$\stackrel{\square}{\square}$	T_{1}	$T_{1} H_{2}$	$T_{1} T_{2}$

$$
P\left(H_{2} \mid H_{1}\right)=P\left(H_{2}\right)=\frac{1}{2}
$$

We can also look at it this way:

$$
\frac{P\left(H_{1} \cap H_{2}\right)}{P\left(H_{1}\right)}=\frac{\text { only one way it can happen }}{\text { two of the four possibilities has a first }} \begin{gathered}
\text { toss heads }
\end{gathered}=\frac{1 / 4}{1 / 2}=\frac{1}{2}
$$

If events are independent, then

$$
P(A \mid B)=P(A) \quad \text { or } \quad P(A \cap B)=P(A) P(B)
$$

Now that we've established that each coin flip is independent of the others

$H_{1} H_{2} H_{3}$	$H_{1} H_{2} T_{3}$	$H_{1} T_{2} H_{3}$	$H_{1} T_{2} T_{3}$
$T_{1} H_{2} H_{3}$	$T_{1} H_{2} T_{3}$	$T_{1} T_{2} H_{3}$	$T_{1} T_{2} T_{3}$

Let's try the probability of three consecutive heads on three tosses
\rightleftharpoons all eight possibilities are shown here

$$
P\left(H_{1} \cap H_{2} \cap H_{3}\right)
$$

only one way out of eight possibilities
and since each toss is independent

$$
P\left(H_{1} \cap H_{2} \cap H_{3}\right)=P\left(H_{1}\right) P\left(H_{2}\right) P\left(H_{3}\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{8}
$$

The probability of the Chiefs winning this Sunday is given as 0.57 . Raven's fantasy team has a probability of 0.68 of
winning if KC wins and a probability of 0.08 when KC loses (because she stacked her team with Chiefs players). Use a tree diagram to find the probability that KC won given that Raven's fantasy team won.

0.57

0.43
$\mathrm{P}($ Chiefs Win \mid FTW $)=\frac{\mathrm{P}(\text { FTW and Chiefs Win })}{\mathrm{P}(\text { FTW })}$

$$
=\frac{0.3876}{0.3876+0.0344}=0.9185
$$

1. A proficiency examination for a certain skill was given to 100 employees of a firm. Forty of the employees were men. Sixty of the employees passed the examination (by scoring above a present level for satisfactory performance.) The breakdown of test results among men and women are shown in the accompanying diagram.
Suppose that an employee is selected at random
from among the 100 who took the examination.

	Male (M)	Female (F)	Total
Pass (P)	24	36	60
Fail (F)	16	24	40
Total	40	60	100

(a) Find the probability that the employee passed, given that he was a man.

$$
P(\text { passed } \mid \operatorname{man})=\frac{P(\text { passed } \cap \operatorname{man})}{P(\operatorname{man})}=\frac{24 / 100}{40 / 100}=\frac{24}{40}=0.60
$$

(b) Find the probability that the employee was a man, given that a passing grade was received.

$$
P(\text { man } \mid \text { passed })=\frac{P(\text { man } \cap \text { passed })}{P(\text { passed })}=\frac{24 / 100}{60 / 100}=\frac{24}{60}=0.40
$$

(c) Are the events passing the exam and male independent?

$$
\begin{aligned}
P(\text { passed } \mid \text { male }) \stackrel{?}{=} P(\text { passed }) & \\
0.60 \stackrel{?}{=} \frac{60}{100} & P(\text { passed } \mid \text { female }) \stackrel{?}{=} P(\text { passed }) \\
0.60 & =0.60 \Rightarrow \text { independent }
\end{aligned}
$$

(d) Are the events passing the exam and female independent?

$$
\begin{aligned}
\frac{24 / 100}{40 / 100} & ? ? \\
= & 60 \\
0.60 & =0.60 \Rightarrow \text { independent }
\end{aligned}
$$

