Multiplication Rule

If A and B are two independent events, then
$P(A$ and $B)=P(A) * P(B)$
If A and B are two dependent events, then

$$
P(A \text { and } B)=P(A) * P(B \mid A)
$$

AKA The Conditional Independence Rule

Let's revisit the one and one situation: A player with a free throw percentage of 60% goes to the line for a one and one. If he makes the first shot, he gets a second. If he misses the first shot, the ball is live. What is the most likely outcome: Zero, One point, or Two points.

To do this, make a tree diagram:

First Shot

$$
\mathrm{P}(\text { Zero })=0.4
$$

Second Shot

$\mathrm{P}($ Two points $)=0.36$
$\mathrm{P}($ One Point $)=0.24$

Multiplication Rule

If A and B are two independent events, then
 $P(A$ and $B)=P(A) * P(B)$

If A and B are two dependent events, then

$$
P(A \text { and } B)=P(A)^{*} P(B \mid A)
$$

More

Tree Diagrams

A jar has 3 red marbles, 4 blue marbles, and 5 green marbles. If you draw two marbles with replacement(meaning you put the first one back after drawing it), find all possible outcomes using a tree diagram.

$$
=1 / 3
$$

$$
=5 / 12
$$

Note that these are independent events because we put the first marble back

For example: the probability of two green marbles is just the product of each one's probability

$$
P(G)=\frac{5}{12} \quad P(2 G)=\frac{5}{12} \cdot \frac{5}{12}=\frac{25}{144}
$$

So as long as the two

$$
P(A \cap B)=P(A) P(B)
$$

Note that probability of the second green marble is not affected by the first if they are independent

$$
P(B \mid A)=P(B)
$$

Multiplication Rule

If A and B are two independent events, then
$P(A$ and $B)=P(A) * P(B)$

If A and B are two dependent events,

 then$P(A$ and $B)=P(A)^{*} P(B \mid A)$

AKA The Conditional Independence Rule

A jar has 3 red marbles, 4 blue marbles, and 5 green marbles. If you draw two marbles without replacement, find all possible outcomes using a tree diagram.

$$
=1 / 4
$$

$P($ Green $)=5 / 12$
$=5 / 12$

Note that these are dependent events because the second marble's probability depends on the outcome of the first draw.

Recall our

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

formulas

$$
P(A \cap B)=P(A) P(B \mid A)
$$

For example: the probability of two green marbles is

$$
P\left(G_{1} \cap G_{2}\right)=P\left(G_{1}\right) P\left(G_{2} \mid G_{1}\right)
$$

The first marble is green The second marble is green given that the first one is green

$$
P\left(G_{1} \cap G_{2}\right)=\frac{5}{12} \cdot \frac{4}{11}=\frac{5}{33}
$$

Our answer matches the one in our probability tree

We can see that this works the other way around by looking at the probability of a blue on the second draw given that we had a green on the first.

$$
P(B \mid G)=\frac{P(B \cap G)}{P(G)}
$$

Consulting our tree branches we get:

$$
P(B \mid G)=\frac{5 / 33}{5 / 12}
$$

$$
P(B \mid G)=\frac{8}{33} \cdot \frac{12}{86}=\frac{4}{11}
$$

This helps us see how conditional probability and the general multiplication rule go hand in hand

$$
P(B \mid A)=\frac{P(A \cap B)}{P(A)}
$$

