Which of the following is a valid discrete probability distribution?
(A)

x	-10	-9	-8	-7	-6	-5	-4	-3	-2	-1
$P(x)$	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1

(B)

x	-2	1	2	4
$P(x)$	0.2	0.6	0.2	0.1

(C)

x	1	2	3
$P(x)$	0.3	0.2	0.1

(D)

$$
\begin{array}{c|cccc}
x & 1 & 2 & 3 & 4 \\
\hline P(x) & 0.1 & 0.2 & 0.3 & -0.1
\end{array}
$$

(E)

x	-2	-1	1	2
$P(x)$	-0.3	-0.2	0.2	0.3

Answer: A

So what do we mean by discrete?

Formulas

We define discrete random variables much the way we did with word problems in algebra
$X=$ an outcome in a sample space
$P(X)=$ probability of X occurring

> Example: $X=\#$ of wins in an NFL season $0 \leq X \leq 17$

Example: $P(12)=$ probability of 12 wins

Expected Value is just the predicted Mean when we have probabilities rather than collected data

$$
\begin{array}{ll}
E(X)=\mu_{X}=\sum x_{i} p_{i} & \\
\operatorname{Var}(X)=\sigma_{X}^{2}=\sum\left(x_{i}-\mu_{X}\right)^{2} p_{i} & \begin{array}{l}
\text { More on these formulas soon. } \\
\text { You can crunch these stats on } \\
\text { your calculator, using your lists. }
\end{array}
\end{array}
$$

Remember that Standard Deviation $=\sqrt{\text { Variance }}$

$$
\sigma_{X}=\sqrt{\sigma_{X}^{2}}
$$

$$
\sum x_{i} p_{i}=x_{1} p_{1}+x_{2} p_{2}+x_{3} p_{3}+\ldots
$$

1. Of all airline flight requests received by a certain discount ticket broker, 70% are for domestic travel (D) and 30% are for international flights (I). Let X be the number of requests among the next three requests received that are for domestic flights. Assuming independence of successive requests, determine the probability distribution of X. (Hint: One possible outcome is DID, with the probability .) What is the probability that there are fewer than 2 requests for domestic flights?

0.21

D
0.7

$$
0.147 \quad 0.063
$$

$$
X=1 \quad X=1 \quad X=2
$$

0.027	0.063	0.063	0.147	0.063	0.147	0.147	0.343
$X=0$	$X=1$	$X=1$	$X=2$	$X=1$	$X=2$	$X=2$	$X=3$

$$
X=1
$$

$$
X=2
$$

$$
X=2
$$

$$
X=3
$$

1. Of all airline flight requests received by a certain discount ticket broker, 70% are for domestic travel (D) and 30% are for international flights (I). Let X be the number of requests among the next three requests received that are for domestic flights. Assuming independence of successive requests, determine the probability distribution of X. (Hint: One possible outcome is DID, with the probability .) What is the probability that there are fewer than 2 requests for domestic flights?

$$
\begin{aligned}
& P(X=1)=0.063+0.063+0.063=0.189 \\
& P(X=2)=0.147+0.147+0.147=0.441
\end{aligned}
$$

$$
\begin{aligned}
P(X<2) & =P(X=0)+P(X=1) \\
& =0.027+0.189 \\
& =0.216
\end{aligned}
$$

1. Of all airline flight requests received by a certain discount ticket broker, 70% are for domestic travel (D) and 30% are for international flights (I). Let X be the number of requests among the next three requests received that are for domestic flights. Assuming independence of successive requests, determine the probability distribution of X. (Hint: One possible outcome is DID, with the probability .) What is the probability that there are fewer than 2 requests for domestic flights?

What is the expected number of domestic flight requests?

$$
\begin{gathered}
\begin{array}{c|c|c|c|c|}
\hline X & 0 & 1 & 2 & 3 \\
\hline \mathrm{P}(X) & 0.027 & 0.189 & 0.441 & 0.343 \\
E(X)=\sum X \cdot P(X)=0(.027)+1(.189)+2(.441)+3(.343)= \\
2.1 \text { requests }
\end{array} .
\end{gathered}
$$

1. Companies proved to have violated pollution laws are being fined various amounts with the following probabilities:

| Fine (\$): | 1000 | 10,000 | 50,000 | 100,000 |
| :--- | ---: | :--- | :--- | :--- | :--- |
| Probability: | .4 | .3 | .2 | .1 |

What are the mean and standard deviation for the fine variable?
(a) $\mu_{x}=40,250, \sigma_{x}=39,118$
(b) $\mu_{x}=40,250, \sigma_{x}=45,169$
(c) $\mu_{x}=23,400, \sigma_{x}=31,350$
(d) $\mu_{x}=23,400, \sigma_{x}=45,169$
(e) $\mu_{x}=23,400, \sigma_{x}=85,185$

Answer: C

In other words, we want

$$
\begin{aligned}
& E(X)=\mu_{X}=\sum x_{i} p_{i} \\
& \sigma_{X}=\sqrt{\sum\left(x_{i}-\mu_{X}\right)^{2} p_{i}}
\end{aligned}
$$

On the newer calculators, 1-Var Stats takes you to this window

Here's a shortcut to doing this on the calculator

STAT

2. At a warehouse sale 100 customers are invited to choose one of 100 identical boxes. Five boxes contain $\$ 700$ color television sets, 25 boxes contain $\$ 540$ camcorders, and the remaining boxes contain $\$ 260$ cameras. What should a customer be willing to pay to participate in the sale?
(a)\$260
(b) $\$ 352$
(c) $\$ 500$

$$
X=\$ \text { a customer pays }
$$

(d)\$540
(e) $\$ 699$

$$
E(X)=\$ \text { a customer should expect to pay }
$$

Answer: B

Or the average amount paid per customer in this case

$$
E(X)=\mu_{X}=700\left(\frac{1}{20}\right)+540\left(\frac{1}{4}\right)+260\left(\frac{7}{10}\right)=\$ 352
$$

