Variables

Numerical
\downarrow
Numeric -Discrete

Categorical
\downarrow

Nonnumeric

We will first focus on Continuous Random Variables

Most Common Continuous RV Distributions -

Uniform Distribution

Normal Distribution

Probability for Continuous RVs

= AREA UNDER A CURVE

Uniform Distribution

Normal Distribution

Empirical Rule - the 68/95/99.7 Rule

Approximately 68% of the observations are within 1 standard deviation of the mean. $(z$-score $= \pm 1)$

Approximately 95% of the observations are within 2 standard deviation of the mean. $(z$-score $= \pm 2)$

Approximately 99.7% of the observations are within 3 standard deviation of the mean. $(z$-score $= \pm 3)$

Deals with the middle
 \qquad $\%$ of the data

Percentiles - value such that \qquad $\%$ of the observations in the data set fall below that value

2.5th \%ile
 50th \%ile
 97.5th \%ile

Standard Normal Distribution

A normal distribution in which the mean is 0 , the standard deviation is 1 , and $x=z$ (the x value is equal to the z score).

$$
\begin{aligned}
& z \sim N(0,1) \\
& \longrightarrow P(z>\#)=\text { normalcdf }(\#, 1 E 99,0,1) \\
& \\
& \\
& x \sim N(\mu, \sigma) \\
& P(x<\#)=\text { normal Distribution } \\
& P(-1 E 99, \#, \mu, \sigma)
\end{aligned}
$$

This is graphing calculator stuff. You will soon see...

z scores

$=\frac{\text { value }- \text { mean }}{\text { standard deviation }}$
$z=\frac{x-\mu}{\sigma}$
$z \sigma=x-\mu$
$x=\mu+2.0$
-Provide a common scale to compare data
-Conveys how many standard deviations above/below the mean a data value is
-Positive z scores lie above the mean

- Negative z scores lie below the mean

Now bear with me while we do a little algebra

Why did we do this?
 Let's find out.

The Backwards Problems - i.e. invNorm
-Calculator $\quad x=\operatorname{invNorm}(\%$ ile, $\mu, \sigma)$
-Formula - not on formula sheet

$$
x=\mu+z \sigma
$$

You can leave these two blank if you have a standard normal distribution

$$
k=\operatorname{invNorm}(0.90, \mu, \sigma)
$$

The Backwards Problems - i.e. invNorm
-Calculator $\quad x=\operatorname{invNorm}(\%$ ile, $\mu, \sigma)$
-Formula - not on formula sheet

$$
x=\mu+z \sigma
$$

A very, very, very, very important thing about invNorm...
You can use it to find a z score when you only know the percentile

$$
z=\operatorname{invNorm}(0.90)=1.28155
$$

This means that the z score of the 90th percentile in anv normal distribution is 1.28155

Try these out on your calculator because it's a skill you will need. If you need to see further demos, watch the next screencast in this unit.

