The Power Rule

The short-cut you've been waiting for

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

So when

$$
f(x)=x^{2} \quad \lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0}(2 x+h)=2 x
$$

$$
\begin{aligned}
& \text { or when } \\
& f(x)=x^{3} \quad \lim _{h \rightarrow 0} \frac{(x+h)^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}{h}=\lim _{h \rightarrow 0} \frac{h\left(3 x^{2}+3 x h+h^{2}\right)}{h}=
\end{aligned}
$$

$$
=\lim _{h \rightarrow 0}\left(3 x^{2}+3 x h+h^{2}\right)=3 x^{2}
$$

or even when
$f(x)=x^{4} \quad \lim _{h \rightarrow 0} \frac{(x+h)^{4}-x^{4}}{h}=\lim _{h \rightarrow 0} \frac{x^{4}+4 x^{3} h+6 x^{2} h^{2}+4 x h^{3}+h^{4}-x^{4}}{h}=$

$$
\lim _{h \rightarrow 0} \frac{h\left(4 x^{3}+6 x^{2} h+4 x h^{2}+h^{3}\right)}{h}=4 x^{3}
$$

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

So when

$$
f(x)=x^{2} \quad \text { gives us } \quad f^{\prime}(x)=2 x
$$

$$
f(x)=x^{3} \text { gives us } f^{\prime}(x)=3 x^{2}
$$

$$
f(x)=x^{4} \text { gives us } f^{\prime}(x)=4 x^{3}
$$

There seems to be a pattern here

$$
f(x)=x^{n} \quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(x+h)^{n}-x^{n}}{h}=n x^{n-1}
$$

The Power Rule

$$
\frac{d}{d x} x^{n}=n x^{n-1}
$$

A quick review of exponents

$$
\frac{1}{x^{n}}=x^{-n}
$$

$$
\sqrt[r]{x^{p}}=(\sqrt[r]{x})^{p}=x^{\frac{p}{r}}
$$

$$
\frac{1}{\sqrt[r]{x^{p}}}=\frac{1}{(\sqrt[r]{x})^{p}}=x^{-\frac{p}{r}}
$$

The Power Rule still applies with all of these

Steps to get you there:

1. Write everything as a power
2. Take the derivative
3. Rewrite all negative powers as positive
4. Convert rational powers to radicals

Shall we try an example or two?

A quick review of exponents

$$
\frac{1}{x^{n}}=x^{-n} \quad \sqrt[r]{x^{p}}=(\sqrt[r]{x})^{p}=x^{\frac{p}{r}} \quad \frac{1}{\sqrt[r]{x^{p}}}=\frac{1}{(\sqrt[r]{x})^{p}}=x^{-\frac{p}{r}}
$$

The Power Rule still applies with all of these

$$
\begin{array}{ll}
f(x)=x^{2}-3 x+4 & g(x)=2 x^{4}+x \\
f^{\prime}(x)=2 x-3 & g^{\prime}(x)=8 x^{3}+1
\end{array}
$$

A quick review of exponents

$$
\frac{1}{x^{n}}=x^{-n} \quad \sqrt[r]{x^{p}}=(\sqrt[r]{x})^{p}=x^{\frac{p}{r}}
$$

$$
\frac{1}{\sqrt[r]{x^{p}}}=\frac{1}{(\sqrt[r]{x})^{p}}=x^{-\frac{p}{r}}
$$

The Power Rule still applies with all of these
$f(x)=\frac{2}{x^{2}}+\sqrt[3]{x}$
Steps to get you there:

$$
f(x)=2 x^{-2}+x^{1 / 3}
$$

1. Write everything as a power
$f^{\prime}(x)$ 2. Take the derivative
$f^{\prime}(x)=-4 x^{-3}+\frac{1}{3} x^{-2 / 3} \longleftarrow 3$. Rewrite all negative powers as positive
2. Convert rational powers to radicals
$f^{\prime}(x)=-\frac{4}{x^{3}}+\frac{1}{3 x^{2 / 3}}$

$$
f^{\prime}(x)=-\frac{4}{x^{3}}+\frac{1}{3 \sqrt[3]{x^{2}}}
$$

A quick review of exponents

$$
\frac{1}{x^{n}}=x^{-n} \quad \sqrt[r]{x^{p}}=(\sqrt[r]{x})^{p}=x^{\frac{p}{r}} \quad \frac{1}{\sqrt[r]{x^{p}}}=\frac{1}{(\sqrt[r]{x})^{p}}=x^{-\frac{p}{r}}
$$

The Power Rule still applies with all of these

$$
\begin{array}{ll}
h(x) & =-\frac{4}{x^{3}}+\sqrt{x} \\
h(x) & =-4 x^{-3}+x^{\frac{1}{2}} \\
h^{\prime}(x) & =12 x^{-4}+\frac{1}{2} x^{-\frac{1}{2}} \\
h^{\prime}(x)=\frac{12}{x^{4}}+\frac{1}{2 \sqrt{x}} \\
h^{\prime}(x)=\frac{12}{x^{4}}+\frac{1}{2 x^{\frac{1}{2}}} &
\end{array}
$$

