Jordan is debating with Olivia whether with two dice it's more likely to (a) take 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get exactly three 12 's in exactly ten rolls. Which has a higher probability?

$$
\text { Before anyone panics... } \quad P(12)=\frac{1}{36} \quad P(\text { not } 12)=\frac{35}{36}
$$

(a) $X=$ \# of rolls it takes to get a $12 \quad X=10$

$$
P(X=10)=\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.0216
$$

This is called a
Geometric Probability
(b) $Y=\#$ of 12 's in ten rolls $\quad Y=3$

Ten rolls, three 12 s

$$
P(Y=3)=\binom{10}{3}\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{7}
$$

How many different ways can we
What's this you ask? have three 12 's and three non- 12 's?

Jordan is debating with Olivia whether with two dice it's more likely to (a) take 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get exactly three 12 's in exactly ten rolls. Which has a higher probability?
(b) $Y=\#$ of 12's in ten rolls $\quad Y=3 \quad P(12)=\frac{1}{36} \quad P($ not 12$)=\frac{35}{36}$

	Roll 1	Roll 2	Roll3	Roll 4	Roll 5	Roll 6	Roll 7	Roll 8	Roll 9	Roll 10
Combo 1	12	12	12	Not 12						
Combo 2	12	Not 12	Not 12	12	Not 12	Not 12	Not 12	Not 12	12	Not 12
Combo 3	12	Not 12	Not 12	Not 12	Not 12	12	Not 12	Not 12	12	Not 12
Combo 4	Not 12	Not 12	Not 12	12	Not 12	Not 12	Not 12	Not 12	12	12
Combo 5	Not 12	Not 12	Not 12	Not 12						

There are actually 120 different combinations of three 12 's and seven non- 12 's

Jordan is debating with Olivia whether with two dice it's more likely to (a) take 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get exactly three 12 's in exactly ten rolls. Which has a higher probability?

$$
\text { Before anyone panics } \ldots \quad P(12)=\frac{1}{36} \quad P(\text { not } 12)=\frac{35}{36}
$$

(a) $X=$ \# of rolls it takes to get a $12 \quad X=10$

$$
P(X=10)=\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.0216
$$

This is called a
Geometric Probability
(b) $Y=$ \# of 12's in ten rolls $\quad Y=3$

Ten rolls, three 12 s
$P(Y=3)=\binom{10}{3}\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{7}=120\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{7}=0.0021$
This is called a
How many different ways can we
Binomial Probability
What's this you ask? have three 12 's and three non-12's?

Jordan is debating with Olivia whether with two dice it's more likely to (a) take up to 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get between one and three (inclusive) 12's in exactly ten rolls. Which has a higher probability?

How does this change the problem? $\quad P(12)=\frac{1}{36} \quad P($ not 12$)=\frac{35}{36}$
(a) $X=$ \# of rolls it takes to get a $12 \quad 1 \leq X \leq 10$

$$
P(X=1) \quad P(X=2) \quad P(X=3) \quad P(X=10)
$$

$\sum_{n=1}^{10}\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{n-1}=\left(\frac{1}{36}\right)+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{2} \ldots+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.2455$

12 in just	First roll not one roll	First two rolls 12, second one a 12	First nine rolls not 12, third one a 12
not 12, tenth			
one a 12			

Remember that the task is to roll until you get a 12
This is called a
Geometric Distribution

Jordan is debating with Olivia whether with two dice it's more likely to (a) take up to 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get between one and three (inclusive) 12's in exactly ten rolls. Which has a higher probability?
(b) $Y=$ \# of 12's in ten rolls $\quad 1 \leq Y \leq 3 \quad P(12)=\frac{1}{36} \quad P($ not 12 $)=\frac{35}{36}$

$$
P(Y=3)
$$

Ten rolls, three 12s

$$
\binom{10}{3}\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{7}+\binom{10}{2}\left(\frac{1}{36}\right)^{2}\left(\frac{35}{36}\right)^{8}+\binom{10}{1}\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}
$$

Jordan is debating with Olivia whether with two dice it's more likely to (a) take up to 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get between one and three (inclusive) 12 's in exactly ten rolls. Which has a higher probability?
(b) $Y=\#$ of 12 's in ten rolls $\quad 1 \leq Y \leq 3 \quad P(12)=\frac{1}{36} \quad P($ not 12$)=\frac{35}{36}$

$$
P(Y=3) \quad P(Y=2) \quad P(Y=1)
$$

Ten rolls, Ten rolls, Ten rolls,

$$
\begin{aligned}
& \binom{10}{3}\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{7}+\binom{10}{2}\left(\frac{1}{36}\right)^{2}\left(\frac{35}{36}\right)^{8}+\binom{10}{1}\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.2454 \\
& 10 \mathrm{nCr} 1=10 \text { different combinatior } \\
& 12 \text { and } 9 \text { non- } 12 \text { 's }
\end{aligned}
$$

$10 \mathrm{nCr} 3=120$ different combinations of three 12 and 9 non-12's
Because each 12 could happen anywhere in the order (could be the first roll, third, tenth, etc) they represent 10
nCr 3 possible combinations of three 12's in ten rolls

This is called a Binomial Distribution

Jordan is debating with Olivia whether with two dice it's more likely to (a) take up to 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get between one and three (inclusive) 12's in exactly ten rolls. Which has a higher probability?
(a) $X=$ \# of rolls it takes to get a $12 \quad 1 \leq X \leq 10 \quad P(12)=\frac{1}{36} \quad P($ not 12 $)=\frac{35}{36}$

$$
P(X=1) \quad P(X=2) \quad P(X=3)
$$

$$
\sum_{n=1}^{10}\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{n-1}=\left(\frac{1}{36}\right)+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{2} \ldots+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.2455
$$

(b) $Y=\#$ of 12 's in ten rolls $\quad 1 \leq Y \leq 3$

$$
\begin{gathered}
P(Y=3) \quad P(Y=2) \\
\binom{10}{3}\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{7}+\binom{10}{2}\left(\frac{1}{36}\right)^{2}\left(\frac{35}{36}\right)^{8}+\binom{10}{1}\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.2454 \begin{array}{c}
\text { This is called a } \\
\text { Binomial } \\
\text { Distribution }
\end{array}
\end{gathered}
$$

These can both be done on the calculator but you have to know how the formulas work for the AP Exam. Stay tuned...

When is a binomial distribution appropriate?

- If there are exactly 2 outcomes, usually designated success and failure, for each trial.
- If the number of trials is fixed.
- If the trials are independent.
- If the probability of success is the same for each trial.

Formulas on AP sheet

$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \begin{gathered}n \text { trials } \\ k \text { successes }\end{gathered}$
$\mu_{x}=n p$
We can use binompdf/cdf
$\sigma_{x}=\sqrt{n p(1-p)}$ This by the way can be calculated with the nCr function on the calculator

Calculator

binom $\operatorname{df}(n, p, k)$ i.e. particular value of $x, P(k=7)$
binomedf (n, p, k) i.e. cumulative values of $x, P(k \leq 7)$ Important note: this includes $k=0$

When is a binomial distribution appropriate?

- If there are exactly 2 outcomes, usually designated success and failure, for each trial.
- If the number of trials is fixed.
- If the trials are independent.
- If the probability of success is the same for each trial.

Formulas on AP sheet

$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \begin{gathered}n \text { trials } \\ k \text { successes }\end{gathered}$
$\mu_{x}=n p$
$\sigma_{x}=\sqrt{n p(1-p)}$
So the expected number of 12 's we would get in 10 rolls is $\mu_{x}=10 \frac{1}{36}=\frac{5}{18}$

Calculator

And the standard deviation is

binom
(n, p, k) i.e. particular value of $x, P(k=7)$
$\sigma_{x}=\sqrt{10 \frac{1}{36} \frac{35}{36}}=0.520$
binom (n, p, k) ie. cumulative values of $x, P(k \leq 7)$ Important note: this includes $k=0$

When is a geometric distribution appropriate?

- If there are exactly 2 outcomes, usually designated success and failure, for each trial.
- If the trials are independent.
- If the probability of success is the same for each trial.
- If there is NOT a fixed number of trials. The trials continue until a success/failure is achieved.

Formulas

$P(X=k)=(1-p)^{k-1} p$

Calculator

geomet	(p, k)
geomet	i.e. particular value of $x, P(k=7)$
	i.e. cumulative values of $x, P(k \leq 7)$

Formulas

Is there a formula on the AP formula sheet that applies?
$E(X)=\mu_{X}=\sum x_{i} p_{i}$
Might be helpful to crunch these stats on your calculator, using your lists.
$P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$
We use our calculators to get
$\mu_{x}=n p$ the probabilities, binompdf/cdf
$\sigma_{x}=\sqrt{n p(1-p)}$
$\mu_{\text {geom }}=\frac{1}{p} \quad \sigma_{\text {geom }}=\frac{\sqrt{1-p}}{p}$

Jordan is debating with Olivia whether with dice it's more likely to (a) take up to 10 rolls to get a 12 (roll until you get a 12 then stop) or (b) to get at least one but no more than three 12 's in exactly ten rolls. Which has a higher probability?

Geometric Distribution

$$
P(X=k)=(1-p)^{k-1} p
$$

$$
\sum_{n=1}^{10}\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{n-1}=\left(\frac{1}{36}\right)+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{2} \ldots+\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.2455
$$

$$
\begin{gathered}
\text { Binomial Distribution } \quad P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \\
\binom{10}{3}\left(\frac{1}{36}\right)^{3}\left(\frac{35}{36}\right)^{7}+\binom{10}{2}\left(\frac{1}{36}\right)^{2}\left(\frac{35}{36}\right)^{8}+\binom{10}{1}\left(\frac{1}{36}\right)\left(\frac{35}{36}\right)^{9}=0.2454
\end{gathered}
$$

Why the subtraction? Recall that $P(k \leq 3)$ includes $k=0$

We only want to find $1 \leq k \leq 3$

Is there a formula/idea that is not on the AP formula sheet that applies?

If events are disjoint, then $P(A \cap B)=0$
If events are independent, then $P(A \mid B)=P(A)$ or

Use these formulas when appropriate, i.e. based on what
 information is given
If $Y=a X+b$, then $\mu_{Y}=a \mu_{X}+b, \sigma_{Y}=a \sigma_{X}$
If X and Y are independent, then $\mu_{X \pm Y}=\mu_{X} \pm \mu_{Y}, \sigma_{X \pm Y}^{2}=\sigma_{X}^{2}+\sigma_{Y}^{2}$

$$
\sigma_{a X \pm b Y}^{2}=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}
$$

If X has a geometric distribution, then $P(X=k)=(1-p)^{k-1} p$
If X has a binomial distribution, then $\quad P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}$

