When working with Normal Distributions we have a value that is easy to calculate and very helpful in comparing data
-Provide a common scale to compare data
z score

$$
=\frac{\text { value }- \text { mean }}{\text { standard deviation }}
$$ -Conveys how many standard deviations above/below the mean a data value is

-Positive z scores lie above the mean

- Negative z scores lie below the mean

$$
z_{i}=\frac{x_{i}-\mu}{\sigma} \quad \text { or } \quad z_{i}=\frac{x_{i}-\bar{x}}{s_{x}}
$$

This value will play an important role in everything we do with normal distributions throughout this class

Empirical Rule - the 68/95/99.7 Rule

$\mu=$ Mean for the population

Approximately 68% of the observations are within 1 standard deviation of the mean.

Approximately 95% of the observations are within 2 standard deviation of the mean.

Approximately 99.7% of the observations are within 3 standard deviation of the mean.
$\sigma=$ Standard Deviation for the population
Deals with the middle ___ of the data

Percentiles - value such that \qquad \% of the observations in the data set fall below that value

2.5th \%ile
 50th \%ile
 97.5th \%ile

Suppose we have test scores that are normally distributed with a mean of 80 and a standard deviation of 5

- The Empirical Rule only applies to normal/bell curve distributions
- You must be able to look at a normal distribution through two lenses
- The middle $\%$ of the data - the 68/95/99.7 Rule
- The $\%$ of data from a given value 'on down'

-The \% of data from a given value 'on down'

Remembering the 68/95/99.7 Rule

Note that both shaded regions end one standard deviation from the mean so we determine our \% using the 68% marker

-The \% of data from a given value 'on down'

Remembering the 68/95/99.7 Rule

Now we have both shaded regions ending two standard
deviations from the mean so we determine our \% using the 95% marker

So where do z-scores fit into all of this?

z scores

$$
=\frac{\text { value }- \text { mean }}{\text { standard deviation }}
$$

If you had a score of 85 on your test, your z -score would be

$$
\frac{85-80}{5}=1
$$

If you had a score of 75 on your test, your z -score would be

So the z-score tells you both how many standard deviations you are from the mean and in which direction

