Two Sample Hypothesis Tests for Proportions

$$
H_{0}: p_{1}=p_{2} \quad \text { or } p_{1}-p_{2}=0
$$

Note \#1: Use
colons

$$
\begin{aligned}
& \neq & & \neq \\
H_{a}: p_{1} & <p_{2} & \text { or } & p_{1}-p_{2}
\end{aligned}<0
$$

Note \#2: Use only PARAMETERS
in your hypothesis...although there will be some problems where we'll use words/sentences

Note \#4: The symbol used in the alternate will come from the context of the problem
$\neq-$ two-sided test, equivalent to a Confidence Interval (CI)
$>\}$ - one-sided test

Steps in Hypothesis Testing

1. Define the population characteristic (i.e. parameter) about which hypotheses are to be tested.
2. State the null hypothesis H_{0}.
3. State the alternative hypothesis H_{a}.
4. State the significance level for the test α.
5. Check all assumptions and state name of test.
6. State the name of the test.
7. State $d f$ if applicable (not applicable in proportion land).
8. Display the test statistic to be used without any computation at this point.
9. Compute the value of the test statistic, showing specific numbers used.
10. Calculate the P - value.
11. Sketch a picture of the situation.
12. State the conclusion in two sentences -
13. Summarize in theory discussing H_{0}.
14. Summarize in context discussing H_{a}.

Two Sample Hypothesis Tests for Proportions

Steps in Two Sample Proportion Hypothesis Testing

1. $p_{1}=$ \qquad

$$
p_{2}=\ldots \ldots
$$

2. $H_{0}: p_{1}=p_{2}$

$$
\neq
$$

3. $H_{a}: p_{1}<p_{2}$
4. State α.
5. Assumptions:
6. 2 Sample Proportion z Test
7. Random Independent Samples
8. $n_{1} \hat{p}_{\hat{p}_{2}} \geq 10, n_{1}\left(1-\hat{p}_{1}\right) \geq 10$
9. $d f=N / A$
$n_{2} \hat{p}_{2} \geq 10, n_{2}\left(1-\hat{p}_{2}\right) \geq 10$
10. SSSTRP

8/9. $z=\frac{\left(\hat{p}_{1}-\hat{p}_{2}\right)-\left(p_{1}-p_{2}\right)}{\sqrt{\frac{\hat{p}_{c}\left(1-\hat{p}_{c}\right)}{n_{1}}+\frac{\hat{p}_{c}\left(1-\hat{p}_{c}\right)}{n_{2}}}}=$ \#

$$
10 . P-\text { value }=\begin{gathered}
P(z>\#)=\operatorname{normalcdf}(\#, 1 E 99,0,1) \\
P(z<\#)=\operatorname{normalcdf}(-1 E 99, \#, 0,1) \\
2 P(z>\#)=2 * \operatorname{normalcdf}(\#, 1 E 99,0,1) \\
2 P(z<\#)=2 * \operatorname{normalcdf}(-1 E 99, \#, 0,1)
\end{gathered}
$$

12. State the conclusion in two sentences -
13. Summarize in theory discussing H_{0}.
14. Summarize in context discussing H_{a}.

$$
\hat{p}_{c}=\frac{\text { total number of successes }}{\text { total number of trials }}
$$

on Hypothesis Tests, not on CIs

Confidence Intervals

General CI Formula

Statistic \pm (Critical Value)(Standard Deviation)
2 Sample Proportion z CI Formula
$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$

Interpretation for Two Sample Proportion Confidence

 IntervalsWe are _ $\%$ confident that $p_{1}-p_{2}$, the true difference in proportions of \qquad , is between \qquad and \qquad .

Interpretation for the Confidence Level of Two Sample

 Proportion Confidence IntervalsWe used a method to construct this estimate that in the long run will successfully capture the true value of $p_{1}-p_{2}$ \qquad \% of the time.

ALWAYS check your assumptions and interpret your interval, even you are not specifically asked to in the problem. Just do it. Seriously.

General Work Flow -

1. Assumptions
2. Construction of Interval
3. Interpretation(s)
