Chi-Squared Goodness of Fit Hypothesis Test

Note #1: We are now looking at CATEGORICAL DATA $p_1 = p_2 =$

 $H_{_0}$:

 $p_k =$

•

•

 $H_a: H_0$ is not true

Note #2: If all the proportions are the same, use - $H_0: p_1 = p_2 = ... = p_k = #$

Note #3: df = k - 1

 $\chi^2 = \sum \frac{(O-E)^2}{E} = \#$

As you will see in the examples and checkpoint questions, the Chi-Squared calculation shown above will use categorical data despite our applying the same rules as we do for proportions

Steps in Hypothesis Testing

- 1. Define the population characteristic (i.e. parameter) about which hypotheses are to be tested.
- 2. State the null hypothesis H_0 .
- 3. State the alternative hypothesis H_{a} .
- 4. State the significance level for the test α .
- 5. Check all assumptions and state name of test.
- 6. State the name of the test.
- 7. State *df* if applicable (not applicable in proportion land).
- 8. Display the test statistic to be used without any computation at this point. $\chi^2 = \sum \frac{(O-E)^2}{E} = \#$
- 9. Compute the value of the test statistic, showing specific numbers used.
- 10. Calculate the P value.
- 11. Sketch a picture of the situation.
- 12. State the conclusion in two sentences -
 - 1. Summarize in theory discussing H_0 . 2. Summarize in context discussing H_a .

Chi-Squared Goodness of Fit Hypothesis Test

 $p_{k} = #$

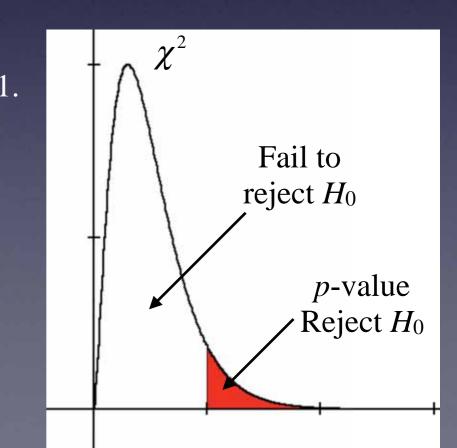
Steps in Chi-Squared GOF Hypothesis Testing

 p_1 = true proportion of ... p_1 = # p_2 = true proportion of ... p_2 = #

2. H_0 :

 p_k = true proportion of ...

3. H_a : H_0 is not true


1.

8/9. $\chi^2 = \sum \frac{(O-E)^2}{E} = \sum \frac{(Observed - Expected)^2}{E} = \#$ 11.

10. $P - value = P(\chi^2 > \#) = \chi^2 cdf(\#, 1E99, df)$

12. State the conclusion in two sentences 1. Summarize in theory discussing H₀.
2. Summarize in context discussing H_a.

4. State α . 5. <u>Assumptions:</u> 1. Random Samples 2. Expected Counts ≥ 5 6. χ^2 GOF Test 7. df = k -1

