Chapter 6/7 Review

Name \qquad
Integrate using either substitution or integration by parts.

1) $\int_{1}^{e} \frac{\ln x}{x} d x$
2) $\int 2 x \ln x d x$
3) $\int \frac{\sqrt{2+\frac{1}{x^{2}}}}{x^{3}} d x$
4) $\int_{1}^{4} \frac{e^{\sqrt{x}}}{\sqrt{x}} d x$
5) $\int x^{2} \cos x d x$
6) $\int_{0}^{1} \frac{\tan ^{-1} x}{1+x^{2}} d x$
7) $\int \frac{d x}{\sqrt{x}(2+\sqrt{x})}$
8) $\int_{0}^{1} \frac{x}{x+1} d x$

Read each question carefully.

1) Identify the region bounded by the curve $y=\sqrt{x^{2}+1}$, the line $y=2$, and the y-axis. Indicating the method that you use each time, set up the integral to find
(a) the area of the region
(b) the volume when the region is rotated about the y-axis
(c) the volume when the region is rotated about x-axis
(d) the volume when the region is rotated about the line $y=2$
2) Find each numeric answer for \#1 using your calculator
3) The region in \#1 is the base of a solid. Set up the integral to find the volume of the solid if the cross-sections perpendicular to the x-axis(sliced along the y-axis) are
(a) squares with a side on the $x y$ plane
(b) rectangles in which the base is half the height
(c) isosceles right triangles in which one side is on the $x y$ plane
(d) isosceles right triangles in which the hypotenuse is on the $x y$ plane
(e) Circles with the diameter on the $x y$ plane
4) Identify the region in the first quadrant bounded by the curve $y=\sqrt{x^{2}+1}$ and the line $x=1$.
(a) Using the shell method, find the volume obtained when the region is rotated about the y axis. Do not use your calculator to find this answer.

(b) How will the shell method differ when rotating the region about the line $x=1$? Set up this integral and use your calculator to find the volume.

