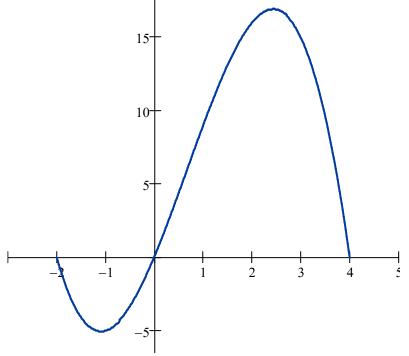
Topics for Chapter 5 Test 1

- 1) Anti-Derivatives and Initial Value Problems
- 2) The Definite Integral
 - a) Integral: $\int_{a}^{b} f(x) dx = F(b) F(a)$

b) Total Area:
$$\int_{a}^{b} |f(x)| dx \text{ or } \int_{a}^{c} f(x) dx - \int_{c}^{b} f(x) dx$$

c) Average Value of a Function:
$$\frac{1}{b-a}\int_{a}^{b}f(x) dx$$


- d) Using the definite integral to solve problems involving particle motion
- 3) Riemann Sums
 - a) Left Hand Method
 - b) Right Hand Method
 - c) Midpoint Method

A calculator is allowed but no notes of any kind are.

Chapter 5 Review 1

Complete the given problems on a separate sheet of paper. Attach this sheet when you turn in your work. Your graphing calculator may be needed for parts of these problems.

1) The function $f(x) = 8x + 2x^2 - x^3$ is graphed over the interval $-2 \le x \le 4$ below.

- (a) Approximate the value of $\int_{0}^{4} f(x) dx$ using a left Riemann sum with four subintervals.
- (b) Approximate the value of $\int_{0}^{4} f(x) dx$ using a midpoint Riemann sum with four subintervals.

(c) Use the definite integral to find the exact value of $\int_{-2}^{4} f(x) dx$

- (d) Use the definite integral to find the exact value of the total area between the curve and the *x*-axis over the interval [-2, 4]
- 2) A particle, initially at rest, moves along the *x*-axis so that its acceleration at any time $t \ge 0$ is given by $a(t) = 12t^2 4$. The position of the particle when t = 1 is x(1) = 3.
 - (a) Write an expression for the velocity v(t) of the particle at any time $t \ge 0$.
 - (b) Find the values of *t* for which the particle is at rest.
 - (c) Write an expression for the position x(t) of the particle at any time $t \ge 0$.

(1990 AB #1)

3) Given
$$\int_{-1}^{2} f(x) dx = 1$$
, $\int_{4}^{-1} f(x) dx = 5$, and $\int_{2}^{6} f(x) dx = -3$, find
(a) $\int_{2}^{4} f(x) dx$
(b) $\int_{4}^{6} f(x) dx$

(c)
$$\int_{-1}^{6} f(x) \, dx$$