Topics for Chapter 5 Test 1

1) Anti-Derivatives and Initial Value Problems
2) The Definite Integral
a) Integral: $\quad \int_{a}^{b} f(x) d x=F(b)-F(a)$
b) Total Area: $\int_{a}^{b}|f(x)| d x$ or $\int_{a}^{c} f(x) d x-\int_{c}^{b} f(x) d x$
c) Average Value of a Function: $\frac{1}{b-a} \int_{a}^{b} f(x) d x$
d) Using the definite integral to solve problems involving particle motion
3) Riemann Sums
a) Left Hand Method
b) Right Hand Method
c) Midpoint Method

A calculator is allowed but no notes of any kind are.

Chapter 5 Review 1

Complete the given problems on a separate sheet of paper. Attach this sheet when you turn in your work. Your graphing calculator may be needed for parts of these problems.

1) The function $f(x)=8 x+2 x^{2}-x^{3}$ is graphed over the interval $-2 \leq x \leq 4$ below.

(a) Approximate the value of $\int_{0}^{4} f(x) d x$ using a left Riemann sum with four subintervals.
(b) Approximate the value of $\int_{0}^{4} f(x) d x$ using a midpoint Riemann sum with four subintervals.
(c) Use the definite integral to find the exact value of $\int_{-2}^{4} f(x) d x$
(d) Use the definite integral to find the exact value of the total area between the curve and the x-axis over the interval $[-2,4]$
2) A particle, initially at rest, moves along the x-axis so that its acceleration at any time $t \geq 0$ is given by $a(t)=12 t^{2}-4$. The position of the particle when $t=1$ is $x(1)=3$.
(a) Write an expression for the velocity $v(\mathrm{t})$ of the particle at any time $t \geq 0$.
(b) Find the values of t for which the particle is at rest.
(c) Write an expression for the position $x(\mathrm{t})$ of the particle at any time $t \geq 0$.
3) Given $\int_{-1}^{2} f(x) d x=1, \int_{4}^{-1} f(x) d x=5$, and , $\int_{2}^{6} f(x) d x=-3$, find
(a) $\int_{2}^{4} f(x) d x$
(b) $\int_{4}^{6} f(x) d x$
(c) $\int_{-1}^{6} f(x) d x$
