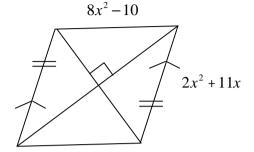
Geometry Accelerated Chapter 6 Practice Test

Name: _____

1. Solve for *x*. Tell the rule(s) used to justify your setup.



Parallelogram: one pair of opposite sides both \cong and \parallel

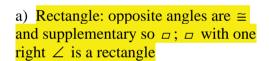
Rhombus: parallelogram with ⊥ diagonals

$$8x^2 - 10 = 2x^2 + 11x$$

$$6x^2 - 11x - 10 = 0$$

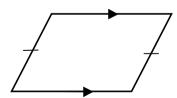
$$(3x+2)(2x-5)=0$$

2. Identify the following quadrilaterals as specifically as possible. Give a brief explanation of why you can identify the figure as you did. (Note: drawings are not to scale!)



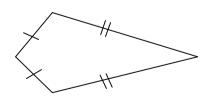
b) Rhombus: diagonals bisect each other so □;
□ with ⊥ diagonals is rhombus

c) Isosceles trapezoid: one pair of || sides so trapezoid; one pair of ≅ sides and ≅ diagonals, so isosceles trapezoid

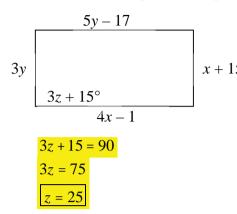


Diagonals are congruent but do not bisect each other

d) Kite: two pairs of adjacent ≅ sides



3. Solve for x, y, and z given the figure below is a rectangle.



$$\begin{array}{c}
5y - 17 \\
\hline
 & 4x - 1 = 5y - 17 \\
 & 4x - 5y = -16
\end{array}$$

$$\begin{array}{c}
4x - 1 = 5y - 17 \\
 & 4x - 5y = -16
\end{array}$$

$$\begin{array}{c}
x + 15 = 3y \\
 & x - 3y = -15
\end{array}$$

$$\begin{array}{c}
-4(x - 3y = -15) \\
 & 4x - 5y = -16
\end{array}$$

$$\begin{array}{c}
7y = 44
\end{array}$$

$$\begin{array}{c}
y = \frac{44}{7}
\end{array}$$

$$\begin{array}{c}
x = 27
\end{array}$$

$$\begin{array}{c}
x = 27
\end{array}$$

- 4. Find the sum of the interior angles, measure of each interior angle, and measure of each exterior angle for the following *regular* polygons.
 - a) Nonagon = 9 sides Sum interior $\angle s$: $(9-2)180^\circ = 1260^\circ$ Each exterior \angle : $\frac{360^{\circ}}{9} = \frac{40^{\circ}}{100}$

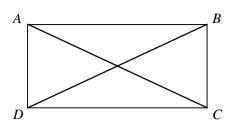
∴ Each interior
$$\angle$$
: $\frac{1260^{\circ}}{9} = \frac{140^{\circ}}{1200}$

b) 15-gon = 15 sides Sum interior $\angle s$: $(15-2)180^\circ = \frac{2340^\circ}{}$ Each exterior \angle : $\frac{360^{\circ}}{15} = \frac{24^{\circ}}{15}$

∴ Each interior
$$\angle$$
: $\frac{2340^{\circ}}{15} = \frac{156^{\circ}}{15}$

- c) Decagon = 10 sides Sum interior $\angle s$: $(10-2)180^\circ = 1440^\circ$ Each exterior \angle : $\frac{360^{\circ}}{10} = \frac{360^{\circ}}{10}$
- \therefore Each interior \angle : $\frac{1440^{\circ}}{10} = 144^{\circ}$
- d) 18-gon = 18 sides Sum interior $\angle s$: $(18-2)180^{\circ} = 2880^{\circ}$ Each exterior \angle : $\frac{360^{\circ}}{18} = \frac{20^{\circ}}{18}$
- ∴ Each interior \angle : $\frac{2880^{\circ}}{18} = \frac{160^{\circ}}{18}$
- e) Octagon = 8 sides Sum interior $\angle s$: $(8-2)180^\circ = 1080^\circ$ Each exterior \angle : $\frac{360^{\circ}}{8} = 45^{\circ}$
- ∴ Each interior \angle : $\frac{1080^{\circ}}{8} = \frac{135^{\circ}}{135^{\circ}}$

5. Sketch rectangle ABCD. If $AC = x^2 + 2x$ and BD = 35 cm, find the value(s) of x.



$$x^2 + 2x = 35$$

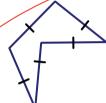
$$x^2 + 2x - 35 = 0$$

$$(x+7)(x-5)=0$$

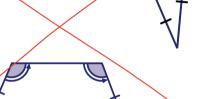
$$x = -7, 5$$

- 6. Sketch each of the following. Mark all congruent sides and/or angles.
 - a) A convex heptagon

b) A non-convex (concave), equilateral pentagon



c) An isosceles trapezoid



- d) An equiangular quadrilateral that is **not** equilateral

7. A regular polygon has interior angles of 157.5°. Find the number of sides that the regular polygon must have.

$$\frac{(n-2)180}{n} = 157.5$$
$$(n-2)180 = 157.5n$$

$$180n - 360 = 157.5n$$

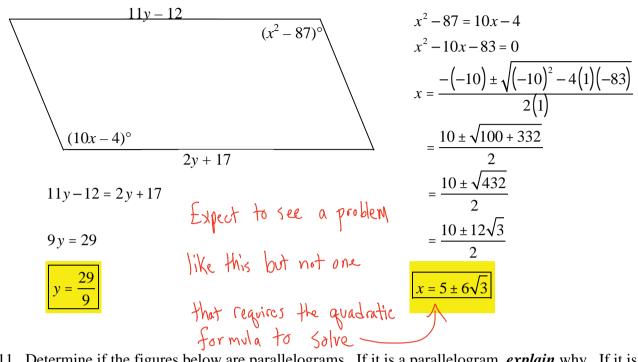
$$22.5n = 360$$

$$n = 16$$
 sides

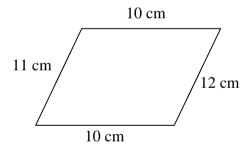
A.M.D.G.

8. Name each of the following as specifically as possible given the listed facts.		
	a)	An eight-sided polygon that is equilateral and equiangular:regular octagon
	b)	The figure illustrated to right: convex hexagon
	c)	A regular quadrilateral: _square
	d)	A quadrilateral with one pair of sides that are congruent and parallel: _parallelogram
	e)	A three-sided polygon with two sides congruent: <u>isosceles triangle</u>
9.		termine whether the statements are TRUE or FALSE . If they are false, <i>explain</i> why. All squares are also rectangles. TRUE
	b)	The measure of each interior angle in every pentagon is 108°. FALSE ; the measure of each angle of a regular pentagon is 108°
	c)	A regular polygon is either equilateral or equiangular. FALSE; the definition of a regular polygon is that it is both equilateral and equiangular
	d)	If a quadrilateral is a rhombus, then it is also a square. FALSE ; a rhombus can only become a square if it takes on the properties of a rectangle
	e)	All rectangles are parallelograms. TRUE

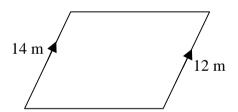
10. Given the parallelogram illustrated below, solve for x and y.



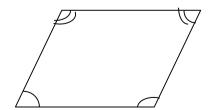
- 11. Determine if the figures below are parallelograms. If it is a parallelogram, *explain* why. If it is not, *explain* why not.
 - a) NO opposite sides are not congruent



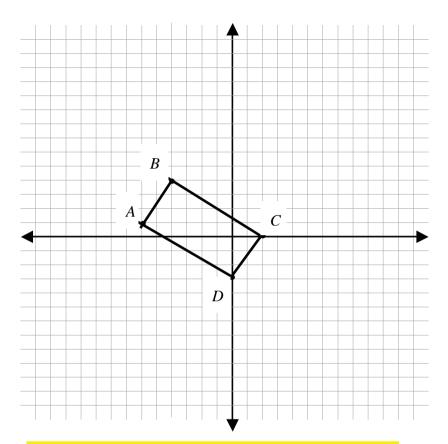
b) NO – one pair of sides is not congruent and parallel



c) NO – opposite angles are not congruent



14. Prove that the quadrilateral with vertices A(-6, 1), B(-4, 4), C(2, 0), D(0, -3) is a parallelogram. Then determine whether the parallelogram is a rectangle, rhombus, or square. Use coordinate geometry to justify your reasoning.



If $\overline{AB} \parallel \overline{CD}$ and $\overline{BC} \parallel \overline{AD}$, then ABCD is a parallelogram.

$$m_{\overline{AB}} = \frac{3}{2}$$
 $m_{\overline{BC}} = -\frac{2}{3}$
 $m_{\overline{CD}} = \frac{3}{2}$ $m_{\overline{AD}} = -\frac{2}{3}$
 $\therefore \overline{AB} \parallel \overline{CD}$ $\therefore \overline{BC} \parallel \overline{AD}$

Since the slopes of \overline{AB} and \overline{BC} are opposite reciprocals, $\overline{AB} \perp \overline{BC}$ and form a right angle. Therefore, ABCD is a rectangle.

If $\overline{AC} \perp \overline{BD}$, then ABCD is a rhombus.

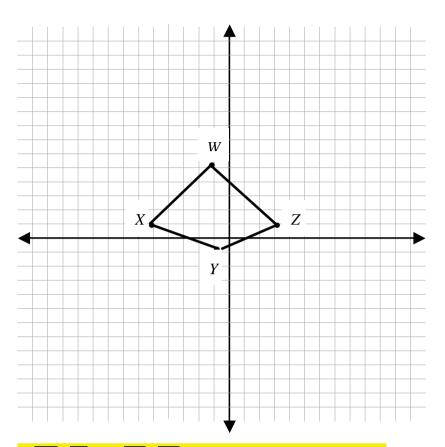
$$m_{\overline{AC}} = -\frac{1}{8}$$

$$m_{\overline{BD}} = -\frac{7}{4}$$

$$\overline{AC} \angle BD$$

∴ ABCD is a rectangle

15. What type of quadrilateral is formed by the vertices W(-1, 5), X(-5, 1), Y(-1, -1), Z(3, 1)? Use coordinate geometry to justify your reasoning.



If $\overline{WX} \parallel \overline{YZ}$ and $\overline{XY} \parallel \overline{WZ}$, then WXYZ is a parallelogram.

$$m_{\overline{WX}} = 1$$
 $m_{\overline{XY}} = -\frac{1}{2}$ $m_{\overline{WZ}} = -1$ $\overline{WX} / \overline{YZ}$ $\overline{XY} / \overline{WZ}$

Since no pairs of opposite sides are parallel, quadrilateral WXYZ is neither a parallelogram nor a trapezoid.

If
$$\overline{XY} \cong \overline{YZ}$$
 and $\overline{XW} \cong \overline{WZ}$, then $WXYZ$ is a kite.

$$d_{\overline{XY}} = \sqrt{20} = 2\sqrt{5} \qquad d_{\overline{XW}} = \sqrt{32} = 4\sqrt{2}$$

$$d_{\overline{YZ}} = \sqrt{20} = 2\sqrt{5} \qquad d_{\overline{WZ}} = \sqrt{32} = 4\sqrt{2}$$

$$\therefore \overline{XY} \cong \overline{YZ} \qquad \therefore \overline{XW} \cong \overline{WZ}$$

∴ WXYZ is a kite