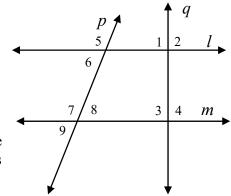
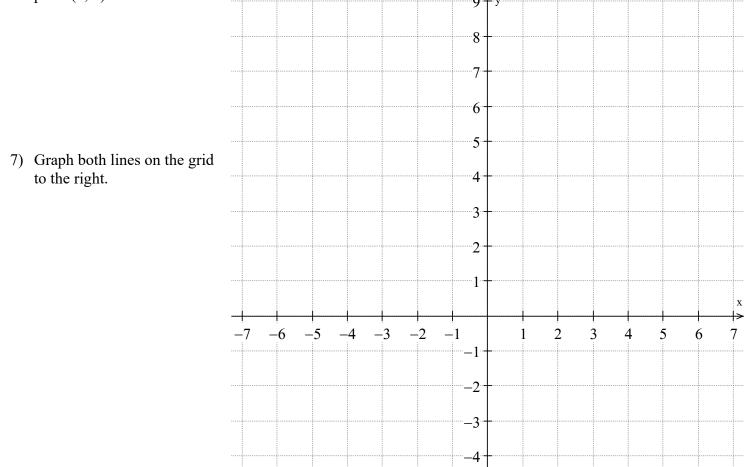
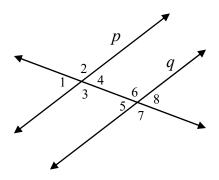

Chapter 3 Practice

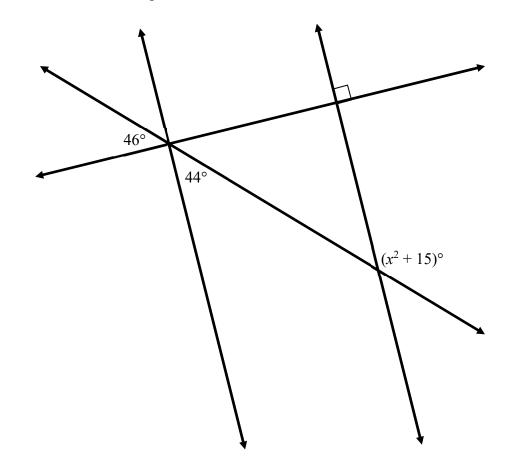

- Name each pair of angles
 a) ∠1 and ∠2
 - b) $\angle 4$ and $\angle 5$ _____
 - c) $\angle 4$ and $\angle 6$
 - d) $\angle 3$ and $\angle 7$
 - e) ∠2 and ∠3 _____
 - f) $\angle 1$ and $\angle 8$
 - g) Which of these pairs of angles are congruent?

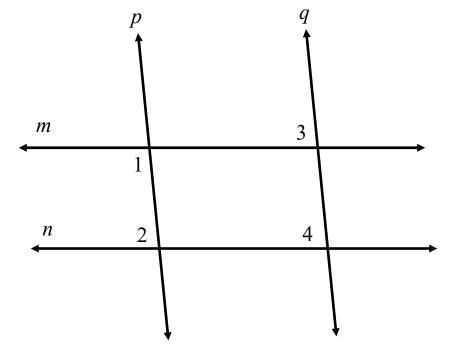


 3) Given ∠6 is supplementary to ∠7 what can you conclude about the given lines? What theorem/postulate justifies your answer?



- 4) Given $m \angle 1 = m \angle 4 = 90^\circ$ what can you conclude about the given lines? What theorems/postulates justify your answer?
- 5) Find the equation of the line passing through the points (4, 0) and (-2, -3) in point-slope form.


6) Find the equation in slope intercept form of the line perpendicular to the line in #5 and passing through the point (2, 4)


- 8) Write the theorem/postulate that matches the given statement.
 - a) If $\angle 1 \cong \angle 5$ then $p \parallel q$
 - b) If $p \parallel q$ then $\angle 4 \cong \angle 5$
 - c) If $\angle 4$ is supplementary to $\angle 6$ then $p \parallel q$
 - d) If $p \parallel q$ then $\angle 3 \cong \angle 7$
 - e) If $\angle 2 \cong \angle 6$ then $p \parallel q$
 - f) If $p \parallel q$ then $\angle 1 \cong \angle 8$

9) Solve for *x* and justify any equation you use with a theorem/postulate.

10) Given: $\angle 1$ is supplementary to $\angle 2$ $\angle 2 \cong \angle 3$ Prove: $p \mid\mid q$

Statement	Reason